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T
he formation of amyloid fibrils in vivo

has implications in neurodegenera-
tive disorders such as Alzheimer's or

Parkinson's diseases1�7 and hence has a
tremendous relevance in medical research.
Nonetheless, amyloid fibrils formed from
various polypeptides and hydrolyzed pro-
teins start to be recognized also as an im-
portant class of bio-nanomaterials8,9 or
as efficient building blocks for functional
materials.10�12 Irrespective of the particular
polymorphic form in which amyloid fibrils
occur, they all share a common fingerprint
at themolecular level: the cross-β structure.13

The large interaction energy between
β-strands and β-sheets, arising from hydro-
gen bonds and hydrophobic forces, provides
these systems with a remarkably large
elastic modulus and strength.14 Beside the
main load-carrying cross-β structure, amyloid
fibrils can also be covered by a coat of un-
structured polypeptide chains (Figure 1a),15

which has been particularlywell-described in
the case of the tau protein.16 An interaction
between side chains in this coat might also
have an influence on the final mechanical
properties of fibrils.17

Understanding the physical properties
of amyloid fibrils is central for the ratio-
nalization of their implications in neurode-
generative diseases, their growth to amy-
loid plaques, and the biophysical processes

involved in protein misfolding. Despite the
importance of this topic, however, a general
approach capable of extracting intrinsic
physical properties of amyloid fibrils,
such as the Young's (elastic) modulus, from
both observable structural features (e.g.,
persistence length) and topological details
(polymorphic forms) is not yet available.
Here we present the first general approach
based on elasticity theory allowing disen-
tangling of the intrinsic rigidity of amyloid
fibrils from the different polymorphic
forms in which these fibrils can occur. Even
within the same protein precursor, the amy-
loid system can exhibit several pathways
of polymorphic transition;18 however, the
most predominant evolution is the transfor-
mation from twisted ribbons to nanotubes
via ahelical ribbon state, whichwas identified
in many amyloid systems.19�24 An example
of fibrils from bovine serum albumin (BSA)
protein source is shown in Figure 1b�d. In
what follows, we first derive new theoretical
expressions for the bending properties of
amyloid fibrils as a function of their mor-
phology, and we then benchmark the pre-
dicted elastic moduli to experimental values
extracted by nanoindentation in systems
exhibiting the three most common forms
of polymorphisms, such as twisted ribbons,
helical ribbons, and nanotubes. The assump-
tion of isotropic material is needed to make
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ABSTRACT Amyloid fibrils occur in diverse morphologies, but how polymorphism affects the resulting

mechanical properties is still not fully appreciated. Using formalisms from the theory of elasticity, we

propose an original way of averaging the second area moment of inertia for non-axisymmetric fibrils,

which constitutes the great majority of amyloid fibrils. By following this approach, we derive theoretical

expressions for the bending properties of the most common polymorphic forms of amyloid fibrils (twisted

ribbons, helical ribbons, and nanotubes), and we benchmark the predictions to experimental cases. These

results not only allow an accurate estimation of the amyloid fibrils' elastic moduli but also bring insight

into the structure�property relationships in the nanomechanics of amyloid systems, such as in the closure of helical ribbons into nanotubes.
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possible all derivations presented in this article. There
is, however, a possibility that amyloid fibrils possess
some level of anisotropy and, therefore, a different
elastic response in the axial and radial directions,
that is, slightly different values of longitudinal and
transversal moduli.25 Yet, due to limited differences
between longitudinal and transversal moduli, the com-
parison between elastic properties along different
directions remains appropriate, and results from nano-
indentation remain the most robust experimental
benchmark available to date. We note here that the
nanoindentation results discussed in this work have
already been validated against corrections for sub-
strate and cantilever tip radii by performing nanoin-
dentation experiments on thick, homogeneous films of
amyloid fibrils, for which both tip radii and substrate
effects become irrelevant.26

The general approach followed to determine the
nanomechanical properties of the fibrils is to calculate
the elastic strain energy stored in a bended fibril of a
given polymorphism andderive the characteristics of an
equivalent simple beam storing the same elastic strain
energy and carrying the same bending moment.27

Typically, assumptions on the cross section are made
to enable the use of affordable estimations of I. This
can be ambiguous for non-axisymmetric geometries.

Our approach provides a general toolbox for the correct
estimation of I starting from energy density equations of
general validity in continuum mechanics and thus can
be applied to any specific geometry. Amyloid systems
studied in this work are BSA,18,28 β-lactoglobulin,29,30

and the end-capped heptapeptide CH3CONH-βA-
βAKLVFF-CONH2, modified from the Aβ(16�20) frag-
ment KLVFF.19,31 The findings presented in the current
study are general because they are derived by principal
elasticity theory arguments and thus can also be applied
to collagen, microtubules, fibronectin, or any other type
of fibrous objects.

RESULTS AND DISCUSSION

Bending of a Twisted Ribbon. The general formula for
the strain energy U stored in an elongated object, is

U ¼ M2L

2D
(1)

where M is a bending moment, L is a length of an
object, and D is a bending (flexural) rigidity (see
Supporting Information). For a simple prismatic beam
of any type of cross section with a longitudinal plane
of symmetry and bending moment M acting in the xz

plane, D = EIy, where E is a Young's (elastic) modulus
and Iy is an area moment of inertia (second moment of
area) with respect to a neutral y axis (see eq S2).
Generally, D can be expressed as a function of the
material mechanical properties and object geometry,
henceD=D(E,G,Ix,Iy,Iz,Ri), whereG is a shearmodulus of
a material and a set Ri represents generalized geo-
metrical parameters of the system.

To illustrate the generality of eq 1, we proceed to
the different polymorphic forms, starting from the
twisted ribbons. This shape is relatively similar to a
rectangular beam, with the only difference being a
periodical variation in cross section and hence in the
local areamoment of inertia. An expected result would
have to be D = EÆIæ, with ÆIæ being an effective second
moment of area, from a suitable averaging (to be
determined here). Let L = Tk be the length of a twisted
ribbon with a twist period T, and a bending moment
M deforms it in the xz plane (Figure 2a); thus vectorsM
at the free ends of the fibril will be collinear to the y axis.
Dividing the ribbon into segments dx, we can rewrite
eq 1 into

dU ¼ M2dx
2D0(x)

The value dU is then the energy stored in a small
segment dx, and D0(x) = EI0(x), where I0(x) is the local
areamoment of inertia in a vicinity of this segment. It is
possible to show that this local moment of inertia can
be defined as a function of the twist angle θ (Figure 2a,
inset)27

I0(θ) ¼ Iy cos
2 θþ Iz sin

2 θ� Iyz sin 2θ

Figure 1. (a) Schematic view of the internal cross-β struc-
ture of a protofilament. Different polymorphic types of an
amyloid fibril composed of two protofilaments and, as an
example, corresponding AFM images of fibrils from BSA
possessing these conformations: (b) twisted ribbon, (c)
helical ribbon, and (d) closed nanotube.
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where Iyz =
R
AyzdA is a product moment of inertia.

From a geometrical relation θ = (2πx)/T, meaning that
dx =dθ 3 T/2π, it leads to

dU ¼ M2

2E
T

2π
dθ

Iy cos2 θþ Iz sin2 θ� Iyz sin 2θ

Taking the integral along k twists (fromθ= 0 toθ= 2πk)
and substituting Tk = L, we get

U ¼ M2L

2E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iy Iz � I2yz

q (2)

For a symmetrical rectangular cross section Iyz = 0 and
comparing eq 2 to the analogue relation for a simple
bar, eq 1, we can see that the average (effective)
second moment of inertia in the case of a twisted
ribbon is

ÆIæ ¼ ffiffiffiffiffiffi
Iy Iz

p
(3)

Although there have been several alternative ways
reported to estimate the effective area moment of
inertia of a twisted ribbon;with acceptable degrees
of success in matching experimental results;the ex-
pression provided by eq 3 has not been considered
before in the literature. In some works, an arithmetic
mean value was used;14,32,33 in some others, the mini-
mal area moment of inertia was preferred, based on
minimal energy considerations and scaling laws.29,30

As wewill see further, this new consideration improves
the correlation between results from nanoindentation

and statistical estimation of the persistence length.
Here we should investigate more details the conse-
quences of eq 3 applied to the model twisted ribbon
amyloids offered by β-lactoglobulin30 and, in particular,
how the persistence length depends on the number of
constitutive protofilaments. For the sake of simplicity
and clarity, we will use the rectangular cross section of
the ribbon, while a model with n cylindrical protofila-
ments packed in-line is considered in the Supporting
Information; despite this small difference, the same
conclusions can be drawn in both scenarios.

Persistence Length versus Number of Protofilaments. The
area moment of inertia with respect to the principal
axes y and z of a rectangular cross section with a width
nd and a height d (n being number of protofilaments,
d their edge size) are Iy = n3d4/12 and Iz = nd4/12, so
that ÆIæ = n2d4/12. Because of the well-known relation
which connects fibril's propensity to bend, that is, the
persistence length λ, with its mechanical properties34

λ ¼ D

kBT
¼ EÆIæ

kBT
(4)

we can deduce that

λ∼ n2 (5)

This expression is somewhat intermediate between the
predictions based on the minimal area moment of
inertia, giving λ∼ n, and those based on the arithmetic
averaging, giving λ∼ (n3þ n)/2. Yet, this result remains
true provided that all protofilaments keep their exact
positions along each other and form regular, undis-
turbed twists (Figure 2b, top). However, the strength
of interaction between protofilaments must be weaker
than between β-sheets inside the core. A slight rearran-
gement in vicinities of points with the smallest second
moment of inertia and highest curvature (Figure 2b,
bottom) can lead to concentration of bending around
these points, and then amore general relation than eq 5
should be applied

λ∼ nν (6)

where 2 g ν g 1 þ δ depending on how strong these
mentioned interactions differ. In the case of free relative
sliding, but with protofilaments remaining attached (i.e.,
without increase of degrees of freedom), we obtain the
critical case of bending only with respect to the lowest
second moment of inertia and ν f 1 þ δ, where the
vanishingly small parameter δ > 0 takes into account an
energy increase through the additional elastic bending
of protofilaments due to rearrangement. The best fit
of the data on 218 fibrils29 with eq 6 gives ν = 1.3
(Figure S3), which illustrates the predictive power of the
proposed theoretical approach. Yet, the difference in
the quality of the fit with ν = 1 (the lower boundary
arising from the assumption of lowest energy bending,
i.e., bending versus the smallest area moment of inertia)
and ν = 1.3 is very small, which shows that, although the

Figure 2. (a) Three-dimensional schematic representation
of a twisted ribbon bending. (b) Normal (top) and perturbed
state (bottom) of the twisted ribbon's filaments. (c) AFM
image of flexible BSA fibrils (type F1

l ) and a transient helical
ribbon polymorphic state [F1

l ].
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generalized eq 6 form can possibly better describe the
persistence length versus number of filaments at larger
numbers n, for the most frequently encountered cases
with low n, the minimum energy bending assumption
remains a robust approach.

For various types of amyloid fibrils adsorbed
on mica (including the bovine serum albumin fibrils
studied here), a 3/4 self-avoiding random walk ex-
ponent has been found experimentally,18,33 which
demonstrates equilibration on the substrate, following
directly from Flory's energy minimization arguments.
Hence, we can now apply this approach to estimate
the Young's moduli of both BSA and β-lactoglobulin
twisted ribbon fibrils.

Left-handed double-protofilament BSA twisted
ribbons, previously identified as polymorph type F1

l ,
have a persistence length of λ= 155 nm based on 296
tracked fibrils and protofilament diameter d = 1.2 nm
(Figure 2c).18 For a cross section of two circular proto-
filaments, Iz = πd4/32 and, using the parallel axis
theorem, Iy = 5πd4/32. According to eqs 3 and 4, ÆIæ =
0.456 nm4, D = 0.64 � 10�27 Pa m4, which together
with the possibility of the filaments' lateral sliding
and reorganization (eq 6) leads to an elastic modulus
in the range of E = 1.4�3 GPa. This result is in perfect
agreement with nanoindentation measurements re-
ported previously for the rigid BSA fibrils (E = 3.0 (
0.6 GPa)31 that possess a nanotube conformation but
identical elastic modulus.

In the case of β-lactoglobulin, it is possible to go
even further in Young's modulus estimation because
this system provides us data for a different number
of protofilaments. Indeed, the fitting equation can
be reduced to a form λ = nνπd4E/64kBT (eq S6), with
ν = 1.3 in this particular case (Figure S3). The final value
E = 4.0 GPa is much closer to the results of nano-
indentation measurements (E = 3.7 ( 0.8 GPa)31 than
the value obtained by only considering the smallest
area moment of inertia (E = 4.98).29

Bending of a Helical Ribbon. In order to extend this
approach to a helical ribbon, we need to find maximal
andminimal values of areamoment of inertia of its cross
section. With a good level of precision, we can approx-
imate the cross section with a sector of a ring centered
at the position described by the angle θ (Figure 3).
The sector angle j is constant along the helical ribbon.
Thus, angle coordinates of the ribbon's edges can be
described by two parametric helices delayed by d0 =
nd/cosR, along theparameter x, wherend is the ribbon's
width, that is, by the two equations j1(x) = 2πx/T þ j0

and j2(x) = 2π(x � d0)/T þ j0. Hence

j ¼ j1 � j2 ¼ 2π
T

nd

cosR
(7)

The maximum area moment of inertia for a ring seg-
ment is obtained at θ = 0 and equals Imax =

R
�j/2
j/2 sin2

γ dγ 3
R
r1
r2r3dr = (jþ sinj)(r2

4� r1
4)/8. At θ =π/2, it gets to

the minimum value Imin =
R
�j/2
j/2 cos2 γ dγ 3

R
r1
r2r3dr =

(j � sin j)(r2
4 � r1

4)/8. These expressions, together with
eq 3, lead to

ÆIæ ¼ r42 � r41
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � sin2 j

q
(8)

where j is defined by eq 7.
We can now benchmark predictions of eqs 7 and 8

on the experimental case of the end-capped hepta-
peptide CH3CONH-βAβAKLVFF-CONH2, for which all
the structural parameters needed are known and
published.19,31 By taking d0 = 45 nm, r2 = 4 nm, r2 �
r1 = 1.7 nm, T = 110 nm, and λ = 14.7 μm, we obtainD =
61� 10�27 Pam4, ÆIæ= 60 nm4 and, finally, the Young's
modulus of 1 GPa, which is very close to the range of
1.7�2.9 GPa measured by nanoindentation.31 In view
of the homogeneous cross section and prismatic pro-
file approximations taken in eq 1 and eq 8, this can only
lead to an overestimation of the average area moment
of inertia here, so this agreement is found to be
remarkably good.

Bending of a Nanotube. Equation 8 is derived with
the assumption that the helices do not interact with
each other on their sides (in the extreme scenario
with j f 2π, this assumption does no longer hold).
An opposite situation occurs in the closed nanotube
bending scenario (Figure 1d and Figure 4a), where the
interaction between helices plays a crucial role and will
shift the position of the neutral axis (Figure 4a, bottom)
away from the central axis. We further assume that
the helices are kept together by adhesion forces
between side chains of the β-sheet fibril's core in the
regions under tension, driven by line tension energy
reduction,22 while material in compression regions
behave as in a full-shell nanotube case. In the case of
equality of tension and compression energy density,
we recover the lowest boundary for shift values of the
neutral axis, such as the homogeneous nanotube case.
However, adhesion and compression forces in a closed
helical ribbon, assimilated to a nanotube, will likely
contribute in a different way. Hence, the adhesion
forces act on one side of neutral axis which is shifted
by distance a from the central line of the nanotube, so
that they equilibrate the moment of compression
forces. Thus, the parameter a embodies the asymmetry
of contributions to the total stored energy arising
from compression and adhesion (a = 0 nm for the
fully symmetric case, i.e., a homogeneous nanotube).

Figure 3. Three-dimensional schematic representation of a
helical ribbon's geometrical parameters upon bending. The
element of a ribbon dx approximated with a ring sector
shape (sector anglej) with a center position defined by the
angle θ.
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We present an exact solution to this problem in
Supporting Information, and the resulting dependence
between the area moment of inertia I and the neutral
axis position a of a nanotube is plotted in Figure 4b
for BSA fibrils of type R1

0 as an example. Using the
known persistence length λ = 1300 nm based on 121
tracked fibrils and the elastic modulus E = 1.4�3 GPa,
we can estimate D = 5.38 � 10�27 Pa m4 via eq 4 and

I = 1.8�3.8 nm4. The consequent estimated values
of a lay in a range of 1.4�1.6 nm (Figure 4b). This can
explain the apparent discrepancy between Young's
moduli of flexible and rigid BSA fibrils when taking
a simplistic full-shell nanotube geometry for the
closed nanotubes with a ring cross section and hence
I = π(r2

4 � r1
4)/4. Indeed, in that case for the elastic

modulus of the rigid R1
0 BSA fibrils, one would get I =

17.613 nm4 (the same value can be obtained assuming
a= 0 nm via eq S7, orj= 2π via eq 8) and an unrealistic
E = 0.31 GPa, which is one magnitude lower than that
estimated for the flexible fibrils and that measured
from direct nanoindentation results.31

CONCLUSIONS

In summary, we have described a general approach
to solve the challenging task of quantifying nanome-
chanical properties of various polymorphic forms of
amyloid fibrils based on the theory of elasticity27 and
statistical analysis of fibrils' coordinates extracted from
AFM images.18,30,31 The exact expression for the area
moment of inertia has been derived for twisted helical
ribbons and nanotubes, allowing extraction of Young's
moduli, which are in excellent agreement with experi-
mental findings from nanoindentation measurements.
The present approach pushes forward the analysis
of nanoscale mechanics of protein fibrils. For example,
in the case of the nanotubes formed from closure of
helical ribbons, one can recover the correct estimation
of Young's modulus by duly quantifying the shift in the
neutral axis caused by different energetic contribu-
tions of the adhesive and compressive parts of the
nanotubes under bending. The current and more
simplistic assumption of a perfectly axisymmetric cross
section (ring-shaped homogeneous section) in this
case would lead to an unrealistic estimation of the
elastic modulus of at least 1 order of magnitude lower.
These results illustrate that the polymorphic shape of
the amyloid fibrils needs to be carefully considered in
order to extract reliable Young's moduli.
The main findings of the article are summarized in

Table 1.

MATERIALS AND METHODS
Preparation of Fibrils. Details on the preparation of

β-lactoglobulin and end-capped heptapeptide CH3CONH-
βAβAKLVFF-CONH2 fibrils are reported elsewhere.

19,29�31 Bovine
serum albumin fibrils were obtained by dissolving 1.5 g of the
protein in 23.5 mL of Milli-Q water adjusted to pH 2 with HCl.
The protein (Sigma-Aldrich, product no. A7030, lyophilized
powderg98%) was dialyzed using a semipermeablemembrane
(Spectra/Por dialysis membrane 1, MWCO 6�8 kDa) for 3 days
prior to the incubation. A vessel containing the resulting 6w/w%
protein solution was kept in an oil bath at high temperature
(90 �C). Mild agitation was applied throughout the whole
incubation process. Samples taken after 40 and 100 h were
visualized by AFM.

Atomic Force Microscopy. All samples were diluted to the BSA
concentration 0.1 w/w % with pH 2 Milli-Q water. Then 20 μL
aliquots of solution were deposited onto freshly cleaved mica.
After 2 min, each substrate was rinsed with Milli-Q water and
dried with an air flow. AFM scanning was performed with a
MultiMode VIII scanning probe microscope (Bruker, USA) oper-
ated in a tapping mode under ambient conditions.

Height and Persistence Length Estimation. Bovine serum albumin
fibrils' data were extracted from high-resolution AFM images
with dimensions of 15� 15 μmand a resolution of 5120� 5120
pixels. Statistical analysis of fibrils' average height and persis-
tence length estimation via end-to-end distance versus internal
contour length and bond correlation function were conducted
using an in-house software written in MATLAB.18 In this study,
we neglect errors on the height estimation from AFM images

Figure 4. (a) Three-dimensional schematic representation of
a nanotubebending. Themoments of adhesion forces above
and compression forces below the neutral axis equilibrate
each other. (b) Dependence of the secondmoment of inertia
I on neutral axis position a (eq S7) with r1 = 1 nm and r2 =
2.2 nm that are radii of the BSA fibrils R1

0 type. (c) AFM image
of the type R1

0 BSA rigid fibrils. Note that one end of the fibril
has a transient helical ribbon conformation [F1

l ].
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because we expect that the broadening of the height distribution
due to errors from microscopy measurements is more significant
than theeffect of the actual variation inheight along fibril contours
and also because the averaging was carried out on a large
statistical data set, leading to an accurate estimation of height
averages. It should be noted that deviations from the average
height can affect the extrapolated elastic modulus E due to the
power 4 dependence of the areamoment of inertia I. For example,
in the case of flexible BSA twisted ribbonswith ÆIæ= 0.456 nm4 and
theaveragediameter of aprotofilamentd=1.2nm, theerror of the
average diameter Δd = 0.1 nm might lead to ΔÆIæ = 0.15 nm4,
corresponding to about 33% change in elastic modulus value.
Thus, these errors remain within the range of uncertainties
associated with errors from nanoindentation measurements.
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protofilaments with a diameter d, assuming the possibility of their lateral sliding. e As a function of a neutral axis shift a (see Figure 4).
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